Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[4-(Iodomethyl)cyclohexyl]-4-methylbenzene

Juan Wang,^a* Erhong Duan,^b Erpeng Zhou,^a Qingguo Yao^a and Wenna Zhang^a

^aSchool of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, People's Republic of China, and ^bSchool of Environmental Science and Engineering. Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: wangjuantju@yahoo.com.cn

Received 8 May 2011; accepted 10 May 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.074; data-to-parameter ratio = 16.5.

In the title compound, $C_{14}H_{19}I$, the cyclohexane ring adopts a chair conformation and the substituents are in equatorial sites. The dihedral angle between the mean planes of the cyclohexane and benzene rings is $67.23 (13)^{\circ}$.

Related literature

The title compound is an intermediate in the praparation of liquid crystals. For background to liquid crystals, see: Demus & Hauser (1990). For the synthesis, see: Kozhushkov et al. (2004).

Experimental

Crystal data

$M_r = 314.19$ $Z = 4$ $M_o K_o radiation$	
$M_r = 514.17$ Monoclinic P2./c Mo Ka radiation	
$a = 17503 (4) \text{ Å}$ $\mu = 2.43 \text{ mm}^{-1}$	
$\mu = 17.555$ (4) A $\mu = 2.45$ mm b = 5.7722 (12) Å $T = 113$ K	
$c = 13.310(3)$ Å $0.20 \times 0.18 \times 0.12$ mn	m
$B = 105.71 (3)^{\circ}$	

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.642, \ T_{\max} = 0.759$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 137 parameters $wR(F^2) = 0.074$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$ S = 1.13 $\Delta \rho_{\rm min} = -1.49 \text{ e} \text{ Å}^{-3}$ 2264 reflections

8233 measured reflections

 $R_{\rm int} = 0.030$

2264 independent reflections

2077 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5876).

References

Demus, D. & Hauser, A. (1990). Selected Topics in Liquid Crystal Research, edited by H.-D. Koswig, p. 19. Berlin: Akademie-Verlag.

Kozhushkov, S. I., Langer, R. & Yufit, D. S. (2004). Eur. J. Org. Chem. pp. 289-303.

Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokvo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o1414 [doi:10.1107/S160053681101765X]

1-[4-(Iodomethyl)cyclohexyl]-4-methylbenzene

J. Wang, E. Duan, E. Zhou, Q. Yao and W. Zhang

Comment

The title compound, (I), is an intermediate of liquid crystal compounds (Demus *et al.*,1990), which is synthesized from 1-bromo-4-methylbenzene and 1-bromo-4-(iodomethyl)cyclohexane using diethyl ether as solvent (Kozhushkov *et al.*,2004). Herein, we report the title compound crystal structure.

In the molecule, Fig 1, a cyclohexane ring was attached at the *para* position of a benzene ring. The cyclohexyl ring has a typical chair conformation, with the tosion angles C3/C4/C5/C6 and C4/C5/C6/C7 being 56.7 (3) $^{\circ}$ and -56.4 (3) $^{\circ}$. No significant H-bonding or stacking interactions occur in the molecule packing.

Experimental

1-(4-(Iodomethyl)cyclohexyl)-4-methylbenzene was synthesized according to the method described by Kozhushkov *et al.* (2004). Colourless prisms of (I) were obtained by evaporation from its ethanoic solution at room temperature (m.p. 318–319 K).

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.95, 0.99 and 1.0Å with $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic and other aliphatic atoms, 0.98Å with $U_{iso} = 1.5U_{eq}(C)$ for CH₃ atoms].

Figures

Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids.

1-[4-(lodomethyl)cyclohexyl]-4-methylbenzene

Crystal data

C ₁₄ H ₁₉ I
$M_r = 314.19$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 17.593 (4) Å
<i>b</i> = 5.7722 (12) Å
<i>c</i> = 13.319 (3) Å
$\beta = 105.71 \ (3)^{\circ}$
$V = 1302.0 (5) \text{ Å}^3$
Z = 4

Data collection

Rigaku Saturn CCD diffractometer	2264 independent reflections
Radiation source: rotating anode	2077 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.030$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 2.4^\circ$
ω and ϕ scans	$h = -20 \rightarrow 19$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -5 \rightarrow 6$
$T_{\min} = 0.642, \ T_{\max} = 0.759$	$l = -15 \rightarrow 15$
8233 measured reflections	

F(000) = 624 $D_{\rm x} = 1.603 \text{ Mg m}^{-3}$

 $\theta = 2.4-27.9^{\circ}$ $\mu = 2.43 \text{ mm}^{-1}$ T = 113 KPrism, colourless $0.20 \times 0.18 \times 0.12 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4209 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.074$	H-atom parameters constrained
<i>S</i> = 1.13	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0482P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2264 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
137 parameters	$\Delta \rho_{max} = 0.52 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.49 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.069728 (10)	1.27167 (3)	0.586560 (14)	0.02224 (11)
C1	0.08795 (15)	0.9476 (4)	0.6716 (2)	0.0203 (6)
H1A	0.0358	0.8786	0.6681	0.024*
H1B	0.1162	0.8396	0.6364	0.024*
C2	0.13409 (14)	0.9681 (4)	0.78479 (19)	0.0141 (5)
H2	0.1054	1.0764	0.8205	0.017*
C3	0.13670 (19)	0.7272 (4)	0.8348 (2)	0.0189 (6)
НЗА	0.0821	0.6747	0.8291	0.023*
H3B	0.1610	0.6158	0.7961	0.023*
C4	0.18367 (18)	0.7284 (4)	0.9493 (2)	0.0182 (6)
H4A	0.1856	0.5694	0.9777	0.022*
H4B	0.1567	0.8288	0.9892	0.022*
C5	0.26817 (15)	0.8169 (4)	0.9629 (2)	0.0153 (5)
Н5	0.2931	0.7121	0.9211	0.018*
C6	0.26524 (15)	1.0592 (4)	0.9148 (2)	0.0192 (6)
H6A	0.3197	1.1131	0.9206	0.023*
H6B	0.2407	1.1686	0.9540	0.023*
C7	0.21762 (14)	1.0587 (4)	0.79919 (19)	0.0183 (6)
H7A	0.2152	1.2184	0.7713	0.022*
H7B	0.2450	0.9606	0.7589	0.022*
C8	0.31731 (17)	0.8004 (4)	1.0745 (2)	0.0176 (6)
C9	0.36274 (15)	0.6031 (4)	1.1085 (2)	0.0196 (6)
Н9	0.3623	0.4812	1.0605	0.024*
C10	0.40846 (15)	0.5803 (5)	1.2105 (2)	0.0219 (6)
H10	0.4389	0.4438	1.2307	0.026*
C11	0.41059 (18)	0.7517 (4)	1.2830 (3)	0.0202 (7)
C12	0.36493 (16)	0.9486 (4)	1.2509 (2)	0.0236 (6)
H12	0.3654	1.0694	1.2995	0.028*
C13	0.31856 (15)	0.9713 (4)	1.1484 (2)	0.0213 (6)
H13	0.2872	1.1063	1.1287	0.026*
C14	0.4619 (2)	0.7254 (5)	1.3942 (3)	0.0281 (7)
H14A	0.4348	0.6273	1.4337	0.042*
H14B	0.4719	0.8782	1.4272	0.042*
H14C	0.5123	0.6535	1.3935	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02506 (16)	0.01680 (15)	0.02078 (17)	-0.00064 (6)	-0.00077 (11)	0.00342 (6)
C1	0.0228 (15)	0.0154 (13)	0.0209 (15)	-0.0007 (11)	0.0028 (12)	0.0017 (11)
C2	0.0136 (13)	0.0133 (13)	0.0153 (14)	0.0027 (9)	0.0037 (11)	-0.0018 (10)
C3	0.0193 (16)	0.0200 (14)	0.0175 (17)	-0.0035 (10)	0.0053 (13)	0.0004 (10)
C4	0.0207 (16)	0.0166 (14)	0.0201 (17)	-0.0014 (10)	0.0100 (13)	0.0026 (10)
C5	0.0156 (14)	0.0148 (12)	0.0155 (14)	0.0024 (10)	0.0044 (11)	-0.0013 (10)
C6	0.0158 (14)	0.0206 (14)	0.0191 (15)	-0.0035 (11)	0.0012 (11)	0.0038 (11)
C7	0.0175 (14)	0.0179 (13)	0.0193 (15)	-0.0023 (10)	0.0044 (11)	0.0045 (10)
C8	0.0168 (15)	0.0171 (13)	0.0198 (16)	-0.0007 (10)	0.0067 (12)	0.0019 (11)
C9	0.0193 (15)	0.0191 (14)	0.0197 (15)	0.0047 (11)	0.0038 (12)	-0.0021 (11)
C10	0.0192 (15)	0.0253 (14)	0.0212 (16)	0.0062 (11)	0.0051 (12)	0.0035 (11)
C11	0.0167 (16)	0.0292 (16)	0.0153 (17)	-0.0044 (10)	0.0050 (13)	0.0038 (10)
C12	0.0293 (16)	0.0245 (14)	0.0187 (16)	-0.0012 (12)	0.0092 (13)	-0.0032 (11)
C13	0.0267 (16)	0.0186 (13)	0.0194 (15)	0.0071 (11)	0.0079 (12)	0.0020 (11)
C14	0.0184 (17)	0.046 (2)	0.0187 (18)	-0.0042 (12)	0.0027 (14)	0.0033 (12)
Geometric para	meters (Å, °)					
I1—C1		2.165 (3)	C6—H	16B	0.99	00
C1—C2		1.511 (3)	C7—H	17A	0.99	00
C1—H1A		0.9900	C7—H	17B	0.99	00
C1—H1B		0.9900	C8—C	213	1.38	9 (4)
C2—C7		1.522 (3)	C8—C	C9	1.39	4 (3)
C2—C3		1.537 (3)	С9—С	210	1.38	5 (4)
С2—Н2		1.0000	C9—H	19	0.95	00
C3—C4		1.525 (4)	C10—	-C11	1.37	6 (4)
С3—НЗА		0.9900	C10—	-H10	0.95	00
С3—Н3В		0.9900	C11—	-C12	1.39	1 (4)
C4—C5		1.536 (4)	C11—	-C14	1.51	9 (5)
C4—H4A		0.9900	C12—	-C13	1.39	3 (4)
C4—H4B		0.9900	C12—	-H12	0.95	00
C5—C8		1.507 (4)	C13—	-H13	0.95	00
C5—C6		1.533 (3)	C14—	-H14A	0.98	00
С5—Н5		1.0000	C14—	-H14B	0.98	00
C6—C7		1.541 (3)	C14—	-H14C	0.98	00
C6—H6A		0.9900				
C2—C1—I1		114.67 (17)	C5—C	С6—Н6В	109.	4
C2—C1—H1A		108.6	C7—0	26—Н6В	109.	4
II—CI—HIA		108.6	H6A–	-C6—H6B	108.	0
C2—C1—H1B		108.6	C2—C	C/—C6	111.	81 (19)
II—CI—HIB		108.6	C2—C	С/—Н/А	109.	3
HIA—CI—HIB	3	107.6	C6—0	сл—H7А	109.	3
C1—C2—C7		113.1 (2)	C2—C	сл—H7B	109.	3
C1—C2—C3		107.8 (2)	C6—0	.27—Н7В	109.	3

C7—C2—C3	110.0 (2)	H7A—C7—H7B	107.9
C1—C2—H2	108.6	C13—C8—C9	116.9 (3)
С7—С2—Н2	108.6	C13—C8—C5	123.3 (2)
С3—С2—Н2	108.6	C9—C8—C5	119.8 (2)
C4—C3—C2	111.9 (2)	C10—C9—C8	121.7 (2)
С4—С3—НЗА	109.2	С10—С9—Н9	119.1
С2—С3—НЗА	109.2	С8—С9—Н9	119.1
С4—С3—Н3В	109.2	C11—C10—C9	121.2 (2)
С2—С3—Н3В	109.2	C11—C10—H10	119.4
НЗА—СЗ—НЗВ	107.9	C9—C10—H10	119.4
C3—C4—C5	111.4 (2)	C10-C11-C12	117.9 (3)
C3—C4—H4A	109.3	C10-C11-C14	120.6 (2)
C5—C4—H4A	109.3	C12-C11-C14	121.6 (2)
C3—C4—H4B	109.3	C11—C12—C13	121.0 (3)
C5—C4—H4B	109.3	C11—C12—H12	119.5
H4A—C4—H4B	108.0	С13—С12—Н12	119.5
C8—C5—C6	114.5 (2)	C8—C13—C12	121.3 (2)
C8—C5—C4	112.0 (2)	C8—C13—H13	119.4
C6—C5—C4	109.4 (2)	С12—С13—Н13	119.4
С8—С5—Н5	106.8	C11—C14—H14A	109.5
С6—С5—Н5	106.8	C11—C14—H14B	109.5
С4—С5—Н5	106.8	H14A—C14—H14B	109.5
C5—C6—C7	111.3 (2)	C11—C14—H14C	109.5
С5—С6—Н6А	109.4	H14A—C14—H14C	109.5
С7—С6—Н6А	109.4	H14B—C14—H14C	109.5
I1—C1—C2—C7	-61.9 (2)	C4—C5—C8—C13	-85.8 (3)
I1—C1—C2—C3	176.26 (17)	C6—C5—C8—C9	-142.4 (2)
C1—C2—C3—C4	178.9 (2)	C4—C5—C8—C9	92.3 (3)
C7—C2—C3—C4	55.1 (3)	C13—C8—C9—C10	-1.5 (4)
C2—C3—C4—C5	-56.9 (3)	C5—C8—C9—C10	-179.7 (2)
C3—C4—C5—C8	-175.25 (19)	C8—C9—C10—C11	0.4 (4)
C3—C4—C5—C6	56.7 (3)	C9—C10—C11—C12	0.3 (4)
C8—C5—C6—C7	177.0 (2)	C9—C10—C11—C14	-179.2 (2)
C4—C5—C6—C7	-56.4 (3)	C10-C11-C12-C13	0.0 (4)
C1—C2—C7—C6	-175.4 (2)	C14—C11—C12—C13	179.5 (2)
C3—C2—C7—C6	-54.8 (3)	C9—C8—C13—C12	1.8 (4)
C5—C6—C7—C2	56.8 (3)	C5—C8—C13—C12	180.0 (2)
C6—C5—C8—C13	39.4 (3)	C11—C12—C13—C8	-1.1 (4)

